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Abstract 

League Championship Algorithm (LCA) is a recently proposed stochastic population based algorithm for continuous global 

optimization which tries to mimic a championship environment wherein artificial teams play in an artificial league for several weeks 

(iterations). Given the league schedule in each week, a number of individuals as sport teams play in pairs and their game outcome is 

determined in terms of win or loss (or tie), given known the playing strength (fitness value) along with the intended team 

formation/arrangement (solution) developed by each team. Modeling an artificial match analysis, each team devises the required 

changes in its formation (generation of a new solution) for the next week contest and the championship goes on for a number of 

seasons (stopping condition). An add-on module based on modeling the end season transfer of players is also developed to possibly 

speed up the global convergence of the algorithm. The aim of this paper is to describe LCA in a step by step manner together with 

verifying the rationale of the algorithm and suitability of the updating equations empirically. 

 

Keywords: global optimization, numerical optimization, metaheuristic algorithms, league championships algorithm. 

 

1. Introduction 

Since 1970s that the idea of a general algorithmic framework emerged, many algorithms have been introduced. With the aim of 

being applicable with relatively few modifications to different optimization problems, these algorithms have got their source of 

inspiration from nature, society, culture, politics, human, etc. The term “metaheuristic” is used for such methods that combine rules 

and randomness while imitating natural, social, cultural and political phenomena. These methods are from now on regularly employed 

in all sectors of business, industry, engineering, etc. However, besides all of the interest necessary to applications of metaheuristics for 

solving difficult and complex optimization problems, occasionally a new metaheuristic algorithm is introduced which uses a novel 

metaphor as a guide for solving optimization problems. For example, particle swarm optimization algorithm (PSO) [1], introduced in 

1995, models the flocking behavior of birds; harmony search (HS) [2], introduced in 2001, is conceptualized using the musical process 

of searching for a perfect state of harmony; bacterial foraging optimization algorithm (BFOA) [3], introduced in 2002, models 

foraging as an optimization process where an animal seeks to maximize energy per unit time spent for foraging; artificial bee colony 

algorithm (ABC) [4], introduced in 2005, simulates the intelligent foraging behavior of a honeybee swarm; central force optimization 

algorithm (CFO) [5], introduced in 2007, makes an analogy between the process of searching a decision space for the maxima of an 

objective function and flying probes through 3-dimensional physical space under the influence of gravity; fire fly algorithm (FA) [6], 

introduced in 2007, performs based on the idealization of the flashing characteristics of fireflies; group search optimizer (GSO) [7], 

introduced in 2009, simulates the animal searching behavior (an active movement by which animals find or attempt to find resources 
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such as food, mates, oviposition, or nesting sites); krill herd algorithm (KH) [8], introduced in 2012, works based on the simulation of 

the herding of the krill swarms in response to specific biological and environmental processes; and optics inspired optimization (OIO) 

[9], introduced in 2013, treats the surface of the numerical function to be optimized as a reflecting surface in which each peak is 

assumed to reflect as a convex mirror and each valley to reflect as a concave one. 

The League Championship Algorithm (LCA) is a recently proposed algorithm for global optimization, which mimics the 

championship process in sport leagues [10]. Beside the nature, culture, politics, human, etc as the typical sources of inspiration of 

various algorithms, the metaphor of sporting competitions is used for the first time in LCA. The methodology of LCA can be 

described as follows. A number of individuals making role as sport teams compete in an artificial league for several weeks (iterations). 

Based on the league schedule in each week, teams play in pairs and their game outcome is determined in terms of win or loss (or tie), 

given the playing strength (fitness value) along with the particular team formation/arrangement (solution) followed by each team. 

Keeping track of the previous week events, each team devises the required changes in its formation/playing style (a new solution is 

generated) for the next week contest and the championship goes on for a number of seasons (stopping condition). LCA is a population 

based algorithm where its “teams” are similar to PSO’s “particles” but with a quite different way of performing their search. The way 

in which a new solution associated to an LCA’s team is generated is governed via imitating the match analysis process followed by 

coaches to design a suitable arrangement for their forthcoming match. In a typical match analysis, coaches will modify their 

arrangement on the basis of their own game experiences and their opponent’s style of play.  

The above rationale is modeled by some LCA-specific paradigm as follows. To determine the winner/loser individuals to bias the 

search toward/outward them, LCA focuses on the relative comparison of individuals, and not their absolute fitness gains. Such a 

mechanism ensures that the win portion for the better solution (team) is greater than the win portion of the weaker solution (team). 

Therefore the search direction is expected to be toward winner (more likely the better solution) and in opposition of loser (more likely 

the weaker solution). Such a mechanism allows that the algorithm moves the population toward promising areas and at the same time 

escapes from local or fruitless areas. Modeling artificial match analysis mathematically in LCA yields four equations which generate 

new solutions in the search space. The development of these equations is closely related to develop a balance between intensification 

and diversification. Unlike many algorithms which only allow a given solution approaches to better solutions in the search space, LCA 

also allows retreat from solutions in a scheduled manner (supplied by the league schedule module). For this reason, we will see that 

LCA performs well on various types of problems. To preserve diversity and avoid premature convergence, LCA uses a truncated 

geometric probability distribution to choose the number of elements in a given solution that their value should change via one of the 

four equations to generate a new solution. Using a truncated geometric distribution we can set the number of changes dynamically 

with more emphasis given to the smaller or larger rate of changes. 

This paper first introduces the rationale of LCA and then examines the role of updating equations of LCA in the sense that whether 

these equations have a lump sum significant effect or we can achieve the same or better performance with a subset of these equations. 

We then examine whether different learning strategies followed in the artificial post-match analysis of LCA are crucial or not. We 

finally try to speed up the convergence of basic LCA via 1) allowing the tie outcome happens beside the win or loss outcomes which 

are typically allowed in the basic LCA. Five scenarios are considered for interpretation of ties and updating equations are adapted 

accordingly 2) introducing the end season transfer operator which mimics the player transfers between teams and allows the 

component of better solutions being propagated among other solutions in certain iterations.  
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2. A review on the related terminology and the required background 

In this section we shall have an overview on the keywords commonly related to team games, especially those terms which will be 

used metaphorically in LCA.  

Sport league- A sports league is an organization that exists to provide a regulated competition for a number of people to compete 

in a specific sport. League is generally used to refer to competitions involving team sports, not individual sports. A league 

championship may be contested in a number of ways. Each team may play every other team a certain number of times in a round-

robin tournament. In such a set-up, a team with the best record becomes champion, based on either a strict win-loss-tie system or on a 

points system where a certain number of points are awarded for a win, loss, or tie [11]. 

Formations- Normally each team has a playing style which can be realized during the game via team formation. A formation is a 

specific structure defining a distribution of players based on their positions within the field of play [12]. For example, the most 

common formations in soccer are variations of 4-4-2, 4-3-3, 3-2-3-2, 5-3-2 and 4-5-1. Different formations can be used depending on 

whether a team wishes to play more attacking or defensive. Every team pursues a best formation which is often related to the type of 

players available to the coach. 

Match analysis- match analysis refers to the objective recording and examination of behavioural events occurring during 

competitions [13]. The main aim of match analysis when observing one’s own team’s performance is to identify strengths which can 

then be further built upon and weaknesses which suggest areas for improvement. Likewise, a coach analyzing opposition performance 

will use data to try to counter opposing strengths (threats) and exploit weaknesses (opportunities) [13]. An extremely important 

ingredient of the match analysis process is the presentation of feedback to players on their own or opponent’s performance through 

video footage, match reconstructions and presentation of data. Feedback can and should be given pre-match, post-match or in the build 

up to next match [13].  

Such kind of analysis is typically known as strengths/weaknesses/opportunities/threats (SWOT) analysis, which explicitly links 

internal (strengths and weaknesses) and external factors (opportunities and threats). Identification of SWOTs is essential because 

subsequent steps in the process of planning for achievement of the main objective may be derived from the SWOTs. The primary 

strength of SWOT analysis arises from matching specific internal and external factors and evaluating the multiple interrelationships 

involved. There are four basic categories of matches for which strategic alternatives can be considered [14]: 

 S/T matches show the strengths in light of major threats from competitors. The team should use its strengths to avoid or defuse 

threats.  

 S/O matches show the strengths and opportunities. The team should attempt to use its strengths to exploit opportunities.  

 W/T matches show the weaknesses against existing threats. The team must attempt to minimize its weaknesses and avoid 

threats. Such strategies are generally defensive. 

 W/O matches illustrate the weaknesses coupled with major opportunities. The team should try to overcome its weaknesses by 

taking advantage of opportunities.  

Later, in section 3-3, we will use these strategies in the metaphorical “LCA match analysis process”, wherein each artificial team 

devises a suitable team formation for its next match. 

The SWOT analysis provides a structured approach to conduct the gap analysis. A gap is sometimes spoken of as “the space 

between where we are and where we want to be”. When the process of identifying gaps includes a deep analysis of the factors that 

http://en.wikipedia.org/wiki/Formation_(football)#4-4-2
http://en.wikipedia.org/wiki/Formation_(football)#4-3-3
http://en.wikipedia.org/wiki/Formation_(football)#3-2-3-2
http://en.wikipedia.org/wiki/Formation_(football)#5-3-2
http://en.wikipedia.org/wiki/Formation_(football)#4-5-1
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have created the current state of the team, the groundwork has been laid for improvement planning. The gap analysis process can be 

used to ensure that the improvement process does not jump from identification of problem areas to proposed solutions without 

understanding the conditions that created the current state of the team. 

Transfer-At the end of each season, teams review their performance over the past season and various changes may occur, e.g. 

changes in the coaching configuration, transfer of players or even changes in the managerial board. A transfer is the action taken 

whenever a player moves between clubs. It refers to the transferring of a player’s registration from one team to another. 

 

3. The League Championship Algorithm (LCA) 

LCA is a population based algorithmic framework for global optimization over a continuous search space. A common feature 

among all population based algorithms like LCA is that they attempt to move a population of possible solutions to promising areas of 

the search space during seeking the optimum. Similar to most of population based algorithms, a set of L solutions in the search space, 

chosen a priori at random, form the initial population of LCA. Using the sporting terminology, “league” in LCA stands for 

“population”. Like most of population based algorithms, LCA consists in evolving gradually the composition of the population in 

successive iterations, by maintaining the size of population constant. For the sake of consistency we may use “week” in place of 

“iteration”. Each solution in the population is associated to one of L teams (L is an even number) and is interpreted as the team’s 

current formation. Therefore, “team i” is matched to the “i
th

 member of the population” and a particular “formation” for team i is 

matched to the i
th

 “solution” in the population. Each solution in the population has a certain fitness value, which measures its degree of 

adaptation to the objective aimed. In LCA the “fitness value” can be interpreted as the “playing strength” along with the intended team 

formation. Almost in all population-based algorithms a succession of operators is applied to individuals in each iteration to generate 

the new solutions for the next iteration. The way in which a new solution associated to an LCA’s team is generated is governed via 

imitating the match analysis process which is typically followed by coaches to design a suitable arrangement for their team. In section 

3-3 we will explain how we make an analogy between the process of generating a new solution in LCA and the sport match analysis 

process. A broad group of population-based algorithms are Evolutionary Algorithms (EA) in which during iterations, the objective is 

to overall improve of the fitness of the individuals [15]. Such a result is obtained by simulating the selection mechanism, which 

governs the evolution of the living beings through supporting the survival of the fittest individuals, according to the Darwinian 

Theory. As a pseudo evolutionary algorithm, selection in LCA is a greedy selection which replaces the current best formation with a 

more productive team formation having a better playing strength. The algorithm terminates after a certain number of “seasons” (S) 

being passed in which each season comprises L-1 weeks (iterations), yielding )1(  LS  weeks of contests. 

Now we idealize some characteristics of the regular championship environment to visualize the artificial championship modeled 

by LCA. Each of the following idealized rules will be used in the subsequent parts of the paper, where we provide a detailed report on 

different modules developed in LCA. 

Idealized rule 1. It is more likely that a team with better playing strength wins the game. The term “playing strength” refers to ability 

of one team to beat another team.  

Idealized rule 2. The outcome of a game is not foretellable given known the teams’ playing strength perfectly.  

Idealized rule 3. The probability that team i beats team j is assumed equal from both teams point of view. 

Idealized rule 4. The outcome of the game is only win or loss. Tie outcome is not considered in the basic version of LCA (We will 

later break this assumption via inclusion of the tie outcome, when introducing other variants of the algorithm).  



 
 © DrKashan.ir 

 

Idealized rule 5. When team i beats team j, any strength helped team i to win has a dual weakness caused team j to lose. In other 

words, any weakness is a lack of a particular strength. An implicit implication of this rule is that while the match 

outcome is imputed to chance, teams may not believe it technically. 

Idealized rule 6. Teams only focus on their upcoming match without regards of the other future matches. Formation settings are done 

just based on the previous week events. 

The basic steps of the League championship algorithm can be represented as a schematic flowchart shown in Fig 1. In practice, a 

representation must be chosen for the individuals in the population. In LCA, a team formation (solution) can be represented with a 

vector of size n1 (n is the number of problem parameters or variables) of real numbers. Each element is associated to one of the 

players and represents the value of the corresponding variable of the problem. One can imagine that a change in the value of a variable 

reflects a change in the job of the relevant player in the new formation. Let )),...,,(( 21 nxxxXf   be an n variable numerical function 

that should be minimized over the decision space defined as a subset of 
n

. A team formation (a potential solution) for team i at 

week t can be represented by ),,...,,( 21

t

in

t

i

t

i

t

i xxxX   with )( t

iXf  indicating the fitness/function value resulted from t

i
X . Back to our 

terminology, this value is called the playing strength along with formation t

i
X . By ),...,,(

21

t

in

t

i

t

i

t

i
bbbB   we denote the best previously 

experienced formation by team i until week t, yielding the best playing strength value. To determine t

i
B , we employ a greedy 

selection between t

i
X  and 1t

i
B based on the value of )( t

i
Xf  and )( 1t

i
Bf .  

In the subsequent subsections we will describe the main modules of LCA; especially the manner of generating the league schedule, 

determining the winner/loser; and setting up a new team formation. 

 

3-1. Generating the league schedule 

A common thread between all sport leagues is a structure that allows teams to compete against each other in a nonrandom order on a 

set schedule, usually called a season. Likewise in LCA, the first step necessary to simulate a championship environment is to schedule 

the matches in each season. A single round-robin schedule is utilized in which each team plays every other team once in each season. 

For a sport league composed of L teams, the single round-robin tournament requires 2)1( LL  matches, because in each of )1( L  

rounds (weeks), 2L  matches will be run in parallel (if L is odd, there will be L rounds with 2)1( L  matches, and one team have no 

game in that round).  

The scheduling algorithm is simple and we illustrate it using a sport league composed of 8 teams 8)( L . Let assign each team a 

number and pair them off in the first week (Fig 2a). Fig 2a implies that team 1 plays 8, 2 plays 7 and so on. For the second week, fix one 

team, say team 1, and rotate the others clockwise (Fig 2b). In this week, 1 plays 7, 8 plays 6 and so on. For the third week, once again 

rotate the order clockwise. So, 1 plays 6, 7 plays 5 and so on (Fig 2c). We continue this process until getting the initial state. The last 

week (week 7) schedule can be obtained from Fig 2d. If L is odd, a dummy team is added. In each week, the opponent of the dummy 

team does not play and gets rest. 

It is worth to mention that the round-robin tournament problem can be modelled as an edge-coloring problem in a diagraph [16]. In 

LCA, the championship continues for S successive seasons in which the league schedule for each season is a single round-robin 

schedule, yielding )1(  LS  weeks of contests (if L is odd, there will be LS  weeks of contests). In our implementation of LCA we 

use the same schedule for all of the S seasons. 

http://en.wikipedia.org/wiki/Dummy
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3-2. Determining the winner/loser 

In a regular league system, teams compete on a weekly basis and their game outcome is determined in terms of win, loss or tie for 

each team. In this way, for example in soccer, each team is scored by 3 points for win, 0 for loss and 1 for tie. Disregarding the 

occasional crisis which may entrap even excellent teams in a continuum of abortive results, it is more likely that a more powerful team 

having a better playing strength beats the weaker one (idealized rule 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig 1.Flowchart of the league championship algorithm (LCA) 
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Fig 2. An illustrative example of the league scheduling algorithm. 

 

Given an ideal league environment devoid of the influence of uninvited effects, we can assume a linear relationship between the 

playing strength of a team and the outcome of its game. Therefore, proportional to its playing strength, each team may have a chance of 

win. This conclusion comes from our second idealized rule. 

Using the playing strength criterion, the winner/loser in LCA is recognized in a stochastic manner with this condition that the chance 

of win for a team is proportional to its degree of fit (recall that in the basic version of LCA there is no tie outcome). The degree of fit is 

proportional to the team’s playing strength and is measured by means of the distance with an ideal reference point. 

Let us consider teams i and j fighting at week t, with their formations t

i
X  and 

t

j
X  and playing strengths )( t

i
Xf  and )( t

j
Xf , 

respectively. Let t

i
p  denotes the chance of team i to beat team j at week t (

t

j
p  can be defined accordingly). Let also f̂  be an ideal value 

(e.g., a lower bound on the optimal value). Based on the idealized rule 1 we can write 

.
ˆ)(

ˆ)(
t

i

t

j

t

j

t

i

p

p

fXf

fXf





 (1) 

Equation (1) implies that the expected chance of win for team i (or j) is proportional to the difference between its current playing 

strength and the ideal strength along with an ideal team. In equation (1) we assume that a better team can comply with more factors that 

an ideal team owns. Since teams are evaluated based on their distance with a common reference point, the ratio of distances can 

determine the winning portion for each team. 

Based on the idealized rule 3 we can also write 

.1 t

j

t

i
pp  

(2) 

From equations (1) and (2) we get 

.
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


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To determine the winner or loser, a random number in [0,1] is generated; if it is less than or equal to t

i
p , team i wins and team j 

loses; otherwise j wins and i loses. Such a procedure for determining the winner/loser is consistent with idealized rules 2 and 4. 

If )( t

i
Xf  be arbitrarily closed to ),( t

jXf then 
t

ip  can be arbitrarily closed to .
2

1
 Moreover, if )( t

jXf  becomes far greater than 

)( t

i
Xf , namely )()( t

i

t

j
XfXf  , then 

t

ip approaches to 1. Since the value of f̂  may be unavailable in advance, we use from the best 

function value found so far (i.e., )}({minˆ
, . . . ,1

t

i
Li

t Bff


 ). 
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Fig 3. Artificial match analysis in LCA 

 

3-3. Setting up a new team formation 

Before any strategy is applied, it is important for a coach to evaluate the strengths and weaknesses of the individual members and 

the team as a whole. This will serve as a guide as to how to approach them and the kind of professional relationship that should be 

developed, which area to focus on, and how to teach the required game skills to enhance their performance. The analysis should also 

include the evaluation of opportunities and threats that comes along with the unique dynamics of the team. Strengths and weaknesses 
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(strengths/weaknesses) while analysis of the opponent’s previous performance is accounted as external evaluation 
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avoid from the possible threats (to receive benefits from possible opportunities). Referring to idealized rule 5, we can focus on the 

weaknesses (strengths) of team k instead. Fig 3 (right branch) demonstrates the hypothetical external evaluation followed by team i. 

Based on the previous week events (idealized rule 6 of section 3), the possible actions for team i derived from the artificial match 

analysis can be summarized in the hypothetical SWOT matrix of Fig 4. Given the basic S/T, S/O, W/T, W/O strategies explained earlier 

in section 2, Fig 4 demonstrates the conditions under which each of these metaphorical strategies is applicable for team i. For example, 

if team i had won and team l had lost, then it is reasonable that team i focuses on the strengths which made it capable to win. At the 

same time it should focus on the weaknesses that brought the loss for team l. These weaknesses may open opportunities for team i. 

Therefore, adopting an S/O type strategy would be a proper action for team i. The matrix presented in Fig 4 is a metaphorical 

demonstration of the SWOT matrix which is typically used in planning [14].  
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Fig 4. Hypothetical SWOT matrix derived from the artificial match analysis. 
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Let t

i
X , t

j
X  and t

k
X  be the team formations associated to teams i, j and k at week t, respectively.  By “ t

i

t

k
XX  ” we address the 

gap between the playing style of team i and team k, sensed via “focusing on the strengths of team k”. In this situation, team k has won 

the game from team l and to beat l, it is reasonable that team i devises for a playing style almost similar to that was adopted by team k at 

week t (for example, playing counter attacking or high pressure defence). In a similar way we can interpret “ t

k

t

i
XX  ” when “focusing 

on the weaknesses of team k”. Here, it may be sensible to avoid a playing style rather similar to that was adopted by team k (for 

example, avoid playing counter attacking or high pressure defence). We can interpret “
t

i

t

j XX  ” or “
t

j

t

i XX  ” in a similar manner. 

Given the fact that usually teams play based on their current best formation (found it suitable over the time) while preparing the 

required changes recommended by the match analysis, the new formation ),...,,( 11

2

1

1

1   t

in

t

i

t

i

t

i
xxxX  for team i ),...,1( Li   at week t+1 can 

be set up by one of the following equations. 

If i had won and l had won too, then the new formation is generated based on the adaptation of S/T strategy 

(S/T equation): 
1

1 1 1 2( ( ) ( ))t t t t t t t
id id id id id kd id id jdx b y r x x r x x             nd ,...,1  (4) 

Else if i had won and l had lost, then the new formation is generated based on the adaptation of S/O strategy 

(S/O equation): 
1

2 1 1 2( ( ) ( ))t t t t t t t
id id id id kd id id id jdx b y r x x r x x             nd ,...,1  (5) 

Else if i had lost and l had won, then the new formation is generated based on the adaptation of W/T strategy 

(W/T equation): 
1

1 1 2 2( ( ) ( ))t t t t t t t
id id id id id kd id jd idx b y r x x r x x             nd ,...,1  (6) 

Else if i had lost and l had lost too, then the new formation is generated based on the adaptation of W/O strategy 

(W/O equation): 
1

2 1 2 2( ( ) ( ))t t t t t t t
id id id id kd id id jd idx b y r x x r x x            nd ,...,1  (7) 

End if 

 

In the above equations, d is the variable or dimension index. 1idr  and 2idr are uniform random numbers in [0,1]. 1  and 2 are 

coefficients used to scale the contribution of “retreat” or “approach” components, respectively. Note that the difference sign in 

parenthesis results in acceleration toward winner or retreat from loser.  

In equations (4) to (7), t

id
y  is a binary change variable which indicates whether 1t

idx   differs from t
idb or not. Only 1t

id
y  allows for 

difference. Let us define ),...,,(
21

t

in

t

i

t

i

t

i
yyyY   as the binary change array in which the number of ones is equal to .t

i
q  It is not usual that 

coaches do changes in all or many aspects of their team. Normally a small number of changes are recommended. By analogy, it is 

sensible that the number of changes made in t

i
B (i.e., the value of t

i
q ) be small. To simulate the number of changes, we use a truncated 

geometric probability distribution [17]. Using a truncated geometric distribution, we can set the number of changes dynamically with 

more emphasis given to the smaller rate of changes. The following formula simulates the random number of changes made in t

i
B  to get 

the new team formation 1t

i
X  (see the appendix). 

},...,1,{  :    1
)1ln(

)))1(1(1ln(
000
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



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
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 Where r is a random number in [0,1] and 1, 0c cp p   is a control parameter. If 0cp  , then the situation is reversed and the 

more negative the value of pc, the more emphasis is given to the greater rate of changes. 
0

q is the least number of changes realized 

during the artificial match analysis. We assume that the number of changes made in the best formation is at least one, (i.e., 1
0
q ). 

Typically, cp  is known as the probability of success in the truncated geometric distribution. The greater the value of cp , the smaller 

number of changes are recommended. After simulating the number of changes by (8), t

i
q  number of elements are selected randomly 

from t

i
B  and their value changes according to one of equations (4) to (7).  

 

Example: The step-wise procedure for the implementation of the first iteration of LCA is given as follows. For demonstration of the 

procedure, the Rastrigin multimodal function is considered in 3 dimensions. We assume that the league size (L) is 4 and 1 2 1   . 

1) Randomly initialize the team formations according to the league size and the number of variables and determine the playing 

strength along with each team formation. Let initialization be also the teams’ current best formation. 

 

Initial team formations 

1 11 1 1 1 1 1
1 111 12 1 11 12 1

1 11 1 1 1 1 1
2 221 22 2 21 22 2

1 1
3 3

1 1 1 1 1 11 1
1 2 1 24 4

 1

 2

 3

 4

n n

n n

L L Ln L L Ln

X Bx x x b b bTeam

X BTeam x x x b b b

Team X B

Team x x x b b bX B

      
      
                
      
            

1.5574 1.7873 1.5547

4.6428 2.5774 3.2881

3.4912 2.4313 2.0604

4.3399 1.0777 4.6816

  
  

     
  
   

 

The corresponding playing strength (objective function) value

1
1

1
2

1
3

1
4

( ) 54.4821

( ) 86.4584

62.1273( )

72.6008( )

f X

f X

f X

f X

   
   
       
   
    

1

1,...,4

ˆ min { ( )} 54.4821i
i

f f B


    

2) Generate a league schedule. 

 

3) Based on the league schedule at week 1, determine the winner/loser among each pair of teams using Equation (3). 

1
1 4
1 1 1

4 1

1
1 1
4 1 1

4 1

1
1 3
2

ˆ( ) 72.5008 54.4821
1

ˆ 72.5008 54.4821 2 54.4821( ) ( ) 2  1  

ˆ  4  losser( ) 54.4821 54.4821
0

ˆ 72.5008 54.4821 2 54.4821( ) ( ) 2

( )

f X f
p

f X f X f Team is winner

Team isf X f
p

f X f X f

f X
p

 
   

    
 

  
       




1 1
3 2 0.159 0.193

1
1 2
3 1 1

3 2

ˆ 62.1273 54.4821
0.193

ˆ 62.1273 86.4584 2 54.4821( ) ( ) 2  2  

ˆ  3  loss( ) 86.4584 54.4821
0.807

ˆ 62.1273 86.4584 2 54.4821( ) ( ) 2

r

f

f X f X f Team is winner

Team isf X f
p

f X f X f

 


  

    


  
       

er




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4) Assume that 
1 1 1
1 3 4 1q q q   , 

1
2 2q   and therefore assume that 

1 1 1 1
1 2 3 4(0,1,0),  (1,1,0),  (1,0,0),  (0,0,1)Y Y Y Y    . To generate 

1 1
1 4,...,q q  we use from Equation (8). Set up a new team formation for each team for its forthcoming match at week 2, via the artificial 

match analysis process and apply the greedy selection to find the team’s best formation as follows (the value of r1id and r2id is 

generated randomly):  

112 212

2 1
11 11

2 1 1 1 1 1 1
Team 1 has won and Team 3 has lost. Use S/O strategy 12 12 12 2 112 22 12 1 212 12 42

4, 3, 2, 0.225, 0.512

1.5574

( ( ) ( ))
1

        1.7873 0.225(2.j l k r r

x b

x b y r x x r x x
i

 
    

 

     
 



2 1
13 13

5774 1.7873) 0.512(1.7873 1.0777) 3.4319

1.5547x b






   


 

 

121 221 122 222

2 1 1 1 1 1 1
21 21 21 2 121 11 21 1 221 21 31

Team 2 has won and Team 4 has lost. Use S/O strategy

3, 4, 1, 0.124, 0.954, 0.765, 0.034

( ( ) ( ))

        4.64

2
j l k r r r r

x b y r x x r x x

i

 

      

     



  2 1 1 1 1 1 1
22 22 22 2 122 12 22 1 222 22 32

2
23 23

28 0.124(1.5574 4.6428) 0.954( 4.6428 3.4912) 11.6338

( ( ) ( ))

        2.5774+0.765(1.7873 2.5774)+0.034(2.5774 2.4313)=1.9779

3.2881t

x b y r x x r x x

x b

 




      


     
  

   


 

131 231

2 1 1 1 1 1 1
31 31 31 1 131 31 41 2 231 21 31

Team 3 has lost and Team 1 has won. Use W/T strategy

2, 1, 4, 0.478, 0.201

( ( ) ( ))

        3.4912+0.478(3.4912 4.3399)+0.
3

j l k r r

x b y r x x r x x

i

 

    

     


 

2 2
32 32

2 2
33 33

201( 4.6428 3.4912) 1.4505

2.4313

2.0604

x b

x b




  


 


 

 

143 243

2 1
41 41

2 1
Team 4 has lost and Team 2 has won. Use W/T strategy 42 42

1, 2, 3, 0.871, 0.367 2 1 1 1 1 1 1
43 43 43 1 143 43 33 2 243 13 43

4.3399

1.0777
4

( ( ) ( ))

     

j l k r r

x b

x b
i

x b y r x x r x x 
    

 

  
 

     

   4.6816+0.871( 4.6816 2.0604)+0.367(1.5547+4.6816)= 8.2651








   

 

New team formations for week 2 contests

2
1

2
2

2
3

2
4

 1 1.5574 3.4319 1.5547

 2 11.6338 1.9779 3.2881

 3 1.4505 2.4313 2.0604

 4 4.3399 1.0777 8.2651

XTeam

XTeam

Team X

Team X

    
    

           
    
         

The corresponding playing strength (objective function) value

 

2
1

2
2

2
3

2
4
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f X
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f X
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   
       
   
      

Greedy selection phase: 

1 2 2 1 2
1 1 1 1 1
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2 2 2 2 2
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3 3 3 3 3
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( ) ( ) 1.5574 1.7873 1.5547
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4.3399 1.0777 4.6816( ) ( )

f B f X B B B

f B f X B B B

f B f X B X B

f B f X B B B

     
   

                 
          
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2
1

2
2

2
3

2
4

( ) 54.4821

( ) 86.4584

51.5749( )

72.6008( )

f B

f B

f B

f B

   
   
       
   
    

1

1,...,4

ˆ min { ( )} 51.5749i
i

f f B


    

5) The process is stopped if the maximum number of function evaluations achieved; otherwise repeat from step 3). 

  

Equations (4) to (7) use the teams’ most recent formations as a basis to determine the new formation 1t

i
X .  Let us use the notation 

“LCA/recent” to address such a variant of LCA. It is also possible to introduce another variant of LCA through developing an 

alternative set of equations for generating the new team formations. Instead of using the most recent formations in the differential 

operations in equations (4) to (7), we can use the current best formations. This means replacing tx  with tb in equations (4) to (7). 

Therefore, an alternative system of equations can be introduced by equations (9) to (12), respectively. 

(S/T equation): 
1

1 1 1 2( ( ) ( ))t t t t t t t
id id id id id kd id id jdx b y r b b r b b                nd ,...,1  (9) 

(S/O equation): 
1

2 1 1 2( ( ) ( ))t t t t t t t
id id id id kd id id id jdx b y r b b r b b                nd ,...,1  (10) 

(W/T equation): 
1

1 1 2 2( ( ) ( ))t t t t t t t
id id id id id kd id jd idx b y r b b r b b                nd ,...,1  (11) 

(W/O equation): 
1

2 1 2 2( ( ) ( ))t t t t t t t
id id id id kd id id jd idx b y r b b r b b                nd ,...,1  (12) 

Using our twofold notation, the new variant is introduced by “LCA/best”. The idea behind introducing this variant is closely related 

to the fact that generally, changes in the legacy formations are minor and therefore coaches are able to anticipate the playing strategy of 

their opponents relying on the knowledge they have acquired over the time form the opponents’ best style. In order to accelerate the 

convergence process, when a team formation replaces its best formation in LCA/best, it is allowed that the new solution, which is a 

better solution, contributes in creation of the other two solutions in the current generation. In this way, a promising solution does not 

need to wait for the next generation to share its components. 

Before finishing this section, it is worthy of note that in LCA diversification is controlled by allowing “retreat” from a solution and 

also by coefficient 
1

 , while intensification is implicitly controlled by permitting “approach” to a solution and by coefficient 
2

 . 

Moreover, the greedy selection employed to update the current best formations affects the intensification ability of the algorithm. 

 

4. Experiments 

In order to evaluate how well LCA performs on finding the global minimum of numerical functions, 5 test functions are 

benchmarked from literature [18]. All functions are optimized in the absence of any constraint, with the exception of the range 

constraints. With the aid of these functions we: 1) compare the performance of LCA with other algorithms, 2) try to validate the system 

of updating equations and learning strategies developed in LCA, 3) examine the effectiveness of simulating win/loss/tie system in place 

of win/loss system modeled in the basic version of LCA and 4) evaluate the impact of introducing a “transfer” like add-on module on 

the convergence speed of the algorithm.  

As we already described, the set of test functions includes 5 functions. The first function f1 is the 2-dimensional Schaffer F6 

function. Function f2 is the unimodal Sphere function which is relatively an easy function. Function f3 is the Griewank function and is 

strongly multimodal. In this function the number of local optima increases with the dimensionality. Function f4 is the Rastrigin function. 
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The cosine terms in this function produce many local minima. Therefore, this function is multimodal and optimization algorithms can 

be trapped easily in a local optimum. Function f5 is the Rosenbrock function which is repeatedly used to test the performance of the 

optimization algorithms. The global minimum in this function is inside a long narrow valley and this makes the convergence toward the 

global minimum difficult. The minimum value of these functions is equal to zero.  

Krink et al. [18] have investigated the performance of EA, differential evolution (DE) and particle swarm optimization (PSO) 

algorithms on these functions. Results obtained by these algorithms are directly adopted from Krink et al. [18] and recorded in Table 1. 

The first value reported in each cell of Table 1 is the mean of best function values obtained in 30 independent runs of the algorithms. 

The second value is the standard deviation of the best function values. The maximum number of functions evaluated by the algorithms 

was 100,000 for the low dimensional Schaffer F6 (2-dimensional) and Sphere (5-dimensional) functions, and 500,000 for 50-

dimensional Griewank, Rastrigin, and Rosenbrock functions, respectively [18]. 

In order to equalize the maximum number of function evaluations, we allow only 100,000 evaluations for the first two functions and 

500,000 evaluations for the other three functions in each run of LCA. Each experiment is repeated 30 times by both LCA/recent and 

LCA/best with different initial random seeds and the mean and standard deviation of the best function values are recorded in Table 1. 

Values less than 1E–12 are assumed to be 0. However, we do not know the level of precision used by Krink et al. [18] to round their 

results. The following setting for control parameters is used in both versions of LCA: 2.0
1
 ; 1

2
 ; 5.0cp ; and .60L   

As seen from the results, both LCA/recent and LCA/best show a competitive performance. Without considering its relatively poor 

performance on the Rosenbrock function, DE finds the global optimum of all functions. But, PSO exhibits a poor performance almost 

on all functions. Unlike its good performance on low dimensional functions, the performance of EA deteriorates on the high 

dimensional functions. On the Rosenbrock function which is the most challenging function, both versions of LCA could reach the best 

mean values far less than the mean values reported by other algorithms. However, for Schaffer F6 function, under the above setting of 

parameters, LCA cannot ensure reaching the global optimum (1E–12). Though, we will show that introducing a “Transfer” like add-on 

module in LCA can give it a fast global optimum finding ability, such that it always hits the global optimum of the Schaffer F6 function 

with a few number of function evaluations. On the Sphere, Griewank and Rastrigin functions, the performance of LCA is consistent and 

it always finds the global optimum. 

 

Table 1. Results obtained by EA [18], DE [18], PSO [18] and LCA on the basic functions 

Function EA  DE  PSO LCA/recent LCA/best 

f1 0  0 0  0 0.00453  0.00090 1.33E–7  1.63E–7 2.23E–9  1.15E–8 

f2 0  0 0  0 2.51130E–8  0 0  0 0  0 

f3 0.00624  0.00138 0  0 1.54900  0.06695 0  0 0  0 

f4 32.6679  1.94017 0  0 13.1162  1.44815 0  0 0  0 

f5 79.8180  10.4477 35.3176  0.27444 5142.45  2929.47 0.06  0.15 0.06  0.10 

 

 

4-1. Effect of updating equations  

In order to examine that whether each of S/T, S/O, W/T and W/O updating equations has a significant effect on the performance of 

LCA, we sequentially omit the effect that each equation might have on the evolution of the solutions. This can be done temporarily by 
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replacing the target equation with something like t

id

t

id
bx 1  in LCA/best. In this way, the target equation will not contribute in the 

generation of the new solutions. Table 2 summarizes the obtained results. In this table, a third part is also added to our twofold notation 

to display further information on the algorithm. For example “LCA/best/omitting S/T equation” indicates that equation (9) has been 

omitted from the system of updating equations. 

From the results of Table 2 it can be inferred that the best performance is achieved when all of the four updating equations, typically 

used in LCA/best, are preserved. In other words, the effect of each equation is significant on at least one function. The progress of the 

mean of best function values is visualized in Figs 5 to 9 for each function under omission of each equation. An important point that can 

be extracted from these figures is that the curve associated to LCA/best always lies on the left side, underneath of other curves, which 

indicates a faster convergence provided via inclusion of all equations. As another observation, there is always one function for which 

the progress curve associated to an omitted equation lies on the right side, above of the other curves, exhibiting a slower convergence. 

For example: on f1 the blue-colored curve lies upside; on f3 the orange-colored curve lies upside; on f4 the pink-colored curve lies upside; 

and on f5 the green-colored curve lies upside. As a consequence, all updating equations have a significant contribution in the 

performance of the algorithm. 
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Fig 5. Progress of the mean of best function values for Shafer F6 

function under imperfect system of LCA equations. 

 Fig 6. Progress of the mean of best function values for Sphere 

function under imperfect system of LCA equations. 
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Fig 7. Progress of the mean of best function values for Griewank 

function under imperfect system of LCA equations. 

 Fig 8. Progress of the mean of best function values for 

Rastrigin function under imperfect system of LCA 

equations. 
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Fig 9. Progress of the mean of best function values for Rosenbrock 

function under imperfect system of LCA equations. 
 

Table 2. Results obtained under imperfect system of LCA equations  

Function 
LCA/best/omitting 

S/T equation 

LCA/best/omitting 

S/O equation 

LCA/best/omitting 

W/T equation 

LCA/best/omitting 

W/O equation 
LCA/best 

f1 4.26E–8  1.43E–7 14 1.31E–7  2.70E–7 5 5.47E–7  2.21E–6 2 2.09E–7  3.88E–7 0 2.23E–9  1.15E–8 15 

f2 0  0 30 0  0 30 0  0 30 0  0 30 0  0 30 

f3 0  0 30 1.13E–11  4.71E–11 25 0  1.46E–12 29 2.04E–12  1.085E–11 28 0  0 30 

f4 0  0 30 0  0 30 0  0 30 1.72  0.76 0 0  0 30 

f5 2.44  3.61 0 0.76  0.85 0 0.51  0.93 0 0.15  0.36 0 0.06  0.10 0 

 
4-2. Effect of using alternative learning strategies in the artificial post-match analysis 

Another analysis which is worth to investigate is to validate the system of equations developed in LCA, in terms of the type of 

learning strategy followed in the artificial post-match analysis. In equations (4) to (7) and (9) to (12) we assumed that the sources of 

learning from the artificial post-match analysis are the team’s previous game and the opponent’s previous game. In this section, we 

examine the situations in which there is only one source of learning, i.e., learning only from the team’s previous game (internal 

learning) or learning only from the opponent’s previous game (external learning). Results obtained by LCA/best under each of these 

learning scenarios are compared with the results obtained from the basic algorithm in Table 3. 

In “LCA/best/Learning only from the team’s previous game” there are two updating equations working based on the team’s 

previous state of win or loss.  

If i had won, then  

(S equation): 
1

1 1( ( ))t t t t t
id id id id id jdx b y r b b          nd ,...,1  (13) 

Else if i had lost, then  

(W equation): 
1

2 1( ( ))t t t t t
id id id id jd idx b y r b b         nd ,...,1  (14) 

End if 
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In “LCA/best/Learning only from the opponent’s previous game” there are again two updating equations working based on the 

opponent’s previous state of win or loss.  

If l had won, then  

(T equation): 
1

1 1( ( ))t t t t t
id id id id id kdx b y r b b          nd ,...,1  (15) 

Else if l had lost, then  

(O equation): 
1

2 1( ( ))t t t t t
id id id id kd idx b y r b b          nd ,...,1  (16) 

End if 

From the progress plots in Figs 10 to 14, we can see that both of internal and external learning used in LCA/best are necessary to 

guarantee a faster convergence. In the absence of any external source of learning in “LCA/best/Learning only from the team’s previous 

game”, although the performance on f1 is better than LCA/best (see Table 3), it is deteriorated on f5. For f2, f3 and f4, the performances 

are comparable. However, plots show that LCA/best converges faster and finds the global minimum of these functions with a fewer 

number of iterations. 

Results show that relying only on the external source of learning results in a relatively poor performance. Almost on all functions, 

“LCA/best/learning only from the opponent’s previous game” reports a mean of best function values far greater than those reported by 

the other two algorithms.  

It is interesting to note that these empirical results are in accordance with the business reality. In business strategy there are two 

schools of thought, the “environmental (external)” and the “resource based (internal)”. Through 1970s and 80s, the dominant school 

was the environmental school which dictates that a firm should analyse the forces present within the environment in order to asses the 

profit potential of the industry, and then design a strategy that aligns the firm to the environment. Nevertheless, above average 

performance is more likely to be the result of core capabilities inherent in a firm’s resources (internal view) than its competitive 

positioning in its industry (external view) [20]. 

 

4-3. Toward speeding up the convergence of LCA 

In this section we are going to model more concepts of the real world league championships to introduce some new add-on parts into 

LCA. The main concern of such a modeling is to possibly enhance the convergence of the algorithm toward the global minima. In 

particular we are interested to allow that the “tie” outcome be also achievable beside the strictly win/loss outcome during “determining 

the winner/loser” phase. We also introduce a “transfer” like operator which mimics the end season movement of players between clubs. 

With this operator, the components of the better solutions are inserted into the weaker ones with the aim of possibly enhancing the 

quality of the whole population. 

 

Table 3. Results obtained under different post-match learning strategies 

Function 
LCA/best/Learning only from the 

team’s previous game 

LCA/best/Learning only from the 

opponent’s previous game 
LCA/best (Learning from  both team’s 

and opponent’s previous game) 

f1 3.93E–13  1.65E–12 28 3.25E–4  1.77E–3 11 2.23E–9  1.15E–8 15 

f2 0  0 30 0  0 30 0  0 30 

f3 0  0 30 1.71E–12  6.60E–11 28 0  0 30 

f4 0  0 30 5.46E–10  1.85E–9 8 0  0 30 

f5 0.67  0.77 0 1.42  1.01 0 0.06  0.10 0 
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Fig 10. Progress of the mean of best function values for Shafer 

F6 function under different post-match learning strategies. 

 Fig 11. Progress of the mean of best function values for Sphere 

function under different post-match learning strategies. 
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Fig 12. Progress of the mean of best function values for 

Griewank function under different post-match learning 

strategies. 

 Fig 13. Progress of the mean of best function values for 

Rastrigin function under different post-match learning 

strategies. 
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Fig 14. Progress of the mean of best function values for Rosenbrock 

function under different post-match learning strategies. 

 

4-3-1. Inclusion of the tie outcome 

To simulate a tie outcome, following section 3-2, two random numbers in [0,1] are generated; if both are less than or equal to t

i
p  

(see equation (3)), then team i wins and team j loses; otherwise if both are greater than t

i
p , then  j wins and i loses. If one is smaller than 
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t

i
p  and the other one is greater than t

i
p , then the outcome of the game is considered as a tie. In the basic versions of LCA, we could 

decide to either come close to or retreat from the opponents’ style of play (team formation), based on the win or loss states, during the 

gap analysis phase. However, in case of a tie there is no direct perception to select between getting approach or retreat. Here, we 

consider the following interpretations from a tie outcome during the artificial match analysis.  

 

- Tie outcome is interpreted as a consequent of strengths/opportunities and weaknesses/threats (LCA/best/win-loss-tie 1). In this 

situation there are nine possible conditions where the first four conditions are the same as those used in LCA/best (equations (9) to 

(12)) and the other five conditions together with their relevant updating equation are as follows. 

Else if i had won and l had tied 

1
1 1 2 2 1 3( ( ) ( ) ( ))t t t t t t t t t

id id id id id kd id kd id id id jdx b y r b b r b b r b b                                                  nd ,...,1  (17) 

Else if i had tied and l had won 

1
1 1 1 2 2 3( ( ) ( ) ( ))t t t t t t t t t

id id id id id kd id id jd id jd idx b y r b b r b b r b b                                               nd ,...,1  (18) 

Else if i had tied and l had tied too, 

1
1 1 2 2 1 3 2 4( ( ) ( ) ( ) ( ))t t t t t t t t t t t

id id id id id kd id kd id id id jd id jd idx b y r b b r b b r b b r b b                     nd ,...,1  (19) 

Else if i had lost and l had tied 

1
1 1 2 2 2 3( ( ) ( ) ( ))t t t t t t t t t

id id id id id kd id kd id id jd idx b y r b b r b b r b b                                                 nd ,...,1  (20) 

Else if i had tied and l had lost 

1
2 1 1 2 2 3( ( ) ( ) ( ))t t t t t t t t t

id id id id kd id id id jd id jd idx b y r b b r b b r b b                                            nd ,...,1  (21) 

For example in (17), the term 1 1 2 2( ) ( )t t t t
id id kd id kd idr b b r b b     which is associated to “l had tied ”, construes that team i 

should focus on the possible opportunities via adopting a style of play close to the style of team k, and at the same time should 

avoid some playing strategies followed by k to neutralize the future threats. The consequent of such a conflict is considered as the 

points sensed from analyzing the opponent’s style of play during the artificial match analysis. 

 

- Tie outcome is neutral. There is no learning from ties (LCA/best/win-loss-tie 2). Here, it is assumed that there is nothing to capture 

from a game with a tie outcome. In this situation, again there are nine updating equations whereas the previous equations change as 

follows.  

Else if i had won and l had tied 

1
1 1( ( ))t t t t t

id id id id id jdx b y r b b                                     nd ,...,1  (22) 

Else if i had tied and l had won 

1
1 1( ( ))t t t t t

id id id id id kdx b y r b b                                      nd ,...,1  (23) 

Else if i had tied and l had tied too, 

t

id

t

id
bx 1                                                                     nd ,...,1  (24) 

Else if i had lost and l had tied 
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1
2 1( ( ))t t t t t

id id id id jd idx b y r b b                                     nd ,...,1  (25) 

Else if i had tied and l had lost 

1
2 1( ( ))t t t t t

id id id id kd idx b y r b b                                     nd ,...,1  (26) 

 

- Tie outcome is randomly interpreted as win or loss (LCA/best/win-loss-tie 3). Here, team i decides to interpret the tie outcome as a 

win or loss, in a random fashion. For example, under the case of “Else if i had won and l had tied” the new formation is set up as 

follows: 

1
1 1 2 2 1 3( ( ) (1 )( ) ( ))t t t t t t t t t

id id id id i id kd id i kd id id id jdx b y r u b b r u b b r b b                         nd ,...,1  (27) 

where ui is a binary valued variable. To assign a value to ui, a random number in [0,1] is generated; if it is less than 0.5, then we set 

0
i

u , otherwise we set 1
i

u .  

 

- Tie outcome is interpreted as a win (LCA/best/win-loss-tie 4). Such interpretation of the tie outcome models the circumstances 

where grabbing the tie score is vital, insomuch as tying the game may be as worth as winning the game (for example, when a team 

attends in a playoff in the opponent’s home). Such a view to the tie outcome is rather conservative. In this situation there are four 

updating equations completely similar to those were used in LCA/best. However, these equations are used under different 

conditions as follows:  

 If i had won/tied and l had won/tied, then use S/T equation (equation (9)) to set up a new team formation 

 Else if i had won/tied and l had lost, then use S/O equation (equation (10)) to set up a new team formation 

 Else if i had lost and l had won/tied, then use W/T equation (equation (11)) to set up a new team formation 

 Else if i had lost and l had lost too, then use W/O equation (equation (12)) to set up a new team formation 

 End if 

 

- Tie outcome is interpreted as a loss (LCA/best/win-loss-tie 5). This case is in contrary with the previous interpretation of ties. Here 

we can assume a situation under which there is a tight competition between the participants and they must gather all possible scores 

to become the champion. In such a situation, the tie score may be worthless insomuch as even the game outcome may be treated as 

a pure loss. Under such a tight competition mode, the conditions for setting up a new team formation are as follows: 

 If i had won and l had won too, then use S/T equation (equation (9)) to set up a new team formation 

 Else if i had won and l had lost/tied, then use S/O equation (equation (10)) to set up a new team formation 

 Else if i had lost/tied and l had won, then use W/T equation (equation (11)) to set up a new team formation 

 Else if i had lost/tied and l had lost/tied, then use W/O equation (equation (12)) to set up a new team formation 

 End if 

Results obtained by LCA/best under each of the above interpretations of ties are tabulated in Table 4. Figs 15 to 19 show the 

convergence behavior of the algorithm, on each function, under various interpretations of the tie outcome. From the results it can be 

inferred that both of “LCA/best/win-loss-tie 1” and “LCA/best/win-loss-tie 5” converge faster than others to the global minimum. In 

theses algorithms, the weight given to the “approach” component is greater than the weight given to the “retreat” component which 

results in preservation of more intensification. Since any intensification weakens the exploration ability, we can observe that on the 
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Rosenbrock function, these algorithms perform a little bit weaker than the other variants, which allow more diversification. It should be 

noted that in “LCA/best/win-loss-tie 1” the more emphasis on the intensification is just due to a larger value chosen for 
2

  in 

comparison with 
1

 . In terms of the final solution quality, LCA/best/win-loss-tie 2 is the most effective algorithm with an acceptable 

performance on all functions. However, in terms of the convergence speed, this algorithm performs slowly on some functions. It is 

interesting to note that the updating equations used in “LCA/best/win-loss-tie 2” are a combination of the updating equations used in 

LCA/best, “LCA/best/Learning only from the team’s previous game” and “LCA/best/Learning only from the opponent’s previous 

game”. The worst result is almost reported by “LCA/best/win-loss-tie 4”. Unlike “LCA/best/win-loss-tie 1” and “LCA/best/win-loss-tie 

5”, the lack of intensification in this algorithm results in a slow convergence. However, the high exploration ability of this algorithm 

makes it capable of finding good quality solutions for the Rosenbrock function. Unlike the tight competition mode pursued in 

“LCA/best/win-loss-tie 5”, which encourages more intensification, the conservative mode followed in “LCA/best/win-loss-tie 4” 

provides more diversification. Figs 15 to 19 demonstrate that the convergence behavior of “LCA/best/win-loss-tie 3” is similar to 

LCA/best. Here, there is a balance between the amount of intensification and diversification produced via inclusion of the tie outcome. 

Therefore, the convergence speed of “LCA/best/win-loss-tie 3” is something between the extreme cases, e.g., “LCA/best/win-loss-tie 4” 

and “LCA/best/win-loss-tie 5”. 

 

Table 4. Results obtained under different interpretations of the tie outcome 

F
u

n
ctio

n
 

LCA/best/win- 

loss-tie 1 

LCA/best/win- 

loss-tie 2 

LCA/best/win- 

loss-tie 3 

LCA/best/win- 

loss-tie 4 

LCA/best/win- 

loss-tie 5 

LCA/best 

(win-loss) 

f1 1.13E–10  3.64E–10 18 6.46E–11  3.46E–10 27 4.90E–8  2.62E–7 14 3.98E–8  2.17E–6 8 3.60E–10  7.97E–10 16 2.23E–9  1.15E–8 15 

f2 0  0 30 0  0 30 0  0 30 0  0 30 0  0 30 0  0 30 

f3 0  0 30 0  0 30 0  0 30 0  0 30 0  0 30 0  0 30 

f4 0  0 30 0  0 30 0  0 30 1.63E–6  4.20E–6 0 0  0 30 0  0 30 

f5 0.38  0.42 0 0.08  0.11 0 0.40  0.92 0 0.12  0.18 0 0.32  0.64 0 0.06  0.10 0 
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Fig 15. Progress of the mean of best function values for Shafer 

F6 function under different interpretations of the tie 

outcome. 

 Fig 16. Progress of the mean of best function values for Sphere 

function under different interpretations of the tie outcome. 
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Fig 17. Progress of the mean of best function values for 

Griewank function under different interpretations of the tie 

outcome. 

 Fig 18. Progress of the mean of best function values for 

Rastrigin function under different interpretations of the tie 

outcome. 
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Fig 19. Progress of the mean of best function values for Rosenbrock 

function under different interpretations of the tie outcome. 

 

4-3-2. Inclusion of the end season transfers 

In team playing, the term “transfer” is referred to as the action taken whenever a player moves between clubs. Likewise in LCA we 

can introduce a transfer like operator (or a local search module) with the aim of speeding up the convergence of the algorithm. At the 

end of each season (i.e., every 1L  successive weeks, or alternately when 0)1,mod( Lt ) transfers are allowed for team i 

),...,1( Li  , where a number of dimensions are selected randomly from t

i
B  and their relevant value t

id
b  is replaced with the 

corresponding value t

md
b  taken from t

m
B (m is selected randomly from the set of indices )}()( ,|{ t

i

t

mi
BfBfimmM  ). To decide 

whether the d
th
 element of t

i
B  should change or not, a random number is generated within [0,1]; if it is less than or equal to a threshold 

parameter Tr, then an index m is selected randomly from Mi and the value of t

id
b  is updated by the value of t

md
b . The transfer operator 

only allows that the components of better solutions being inserted into t

i
B  (this condition is enforced by )()( t

i

t

m
BfBf  ). The 

procedure of the transfer operator is as follows: 

For Li :1  

)}()( ,|{ t

i

t

mi
BfBfimmM  ; 
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For 1:d n  

If 
r

Trand   

Randomly select an index m from Mi; 
t

md

t

id
bb  ; 

End if 

End for 

End for 
 

Table 5 summarizes the results obtained by LCA/best under different levels of Tr. As the results indicate, the transfer operator can 

have a significant role in reducing the number of function evaluations before reaching the optimum. Through insertion of the elements 

of better solutions in a weaker solution, the transfer operator steers the search quickly toward promising areas. However, this operator 

may not be effective on all functions. As our earlier experiments indicated, the Rosenbrock function is the one in which the quality of 

the final solution is improved if a proper level of diversification is preserved. Therefore, it is not surprising to see that using the transfer 

operator in LCA/best significantly deteriorates the quality of the final solutions found for this function. Figs 20 to 24 show the progress 

of the mean of best function values under different values of Tr.  From these plots one can observe that an increment in the level of Tr 

results in the unsuccessfulness of the algorithm in reaching always the global minimum, for at least one additional function. Therefore, 

the small values of Tr, e.g., 0.1, are more preferred. Large values of Tr may cause the population being rapidly homogenous and the 

algorithm finishes with a premature convergence.  

 

Table 5. Results obtained under different levels of 
r

T  

F
u

n
ctio

n
 

Tr 

0.1 0.3 0.5 0.7 0.9 LCA/best ( 0
r

T ) 

f1 0  0 30 0  0 30 0  0 30 3.23E–4  1.77E–3 29 9.71E–4  2.96E–3 27 2.23E–9  1.15E–8 15 

f2 0  0 30 0  0 30 0  0 30 0  0 30 0  0 30 0  0 30 

f3 0  0 30 0  0 30 2.46E–4  1.35E–3 29 2.58E–3  1.00E–2 21 0.14  0.21 0 0  0 30 

f4 0  0 30 0.66  0.79 15 2.58  1.09 1 6.72  2.58 0 12.51  3.14 0 0  0 30 

f5 9.16  13.71 0 39.89  34.74 0 85.72  56.13 0 223.43  142.68 0 5024.06  7604.34 0 0.06  0.10 0 
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Fig 20. Progress of the mean of best function values for Shafer 

F6 function under different levels of 
r

T . 

 Fig 21. Progress of the mean of best function values for Sphere 

function under different levels of 
r

T . 
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Fig 22. Progress of the mean of best function values for 

Griewank function under different levels of 
r

T . 

 Fig 23. Progress of the mean of best function values for 

Rastrigin function under different levels of 
r

T . 
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Fig 24. Progress of the mean of best function values for Rosenbrock 

function under different levels of 
r

T . 

  

5. Conclusion and future works 

The league championship algorithm (LCA) has been introduced as a sport driven metaheuristic for numerical function optimization. 

LCA is a population based stochastic search methodology that mimics the sporting competitions in a sport league. At the heart of LCA 

is the artificial match analysis process where the new solutions are generated using a metaphorical SWOT analysis, which is typically 

followed by coaches during the planning for the next game. Some analysis was carried out to verify the rationale of the algorithm and 

the suitability of the updating equations, empirically. Some add-on modules were also introduced into LCA with the aim of possibly 

enhancing the convergence speed of the algorithm toward the global minimum. 

LCA is in its infancy, and much remains to be done to realize its full potency. It is therefore the author’s hope that this paper inspires 

future works on developing LCA’s theory and applications. Choosing a value for the control parameters of any optimization algorithm 

is often subjective, reflecting the user’s experience and insight with a particular problem. To eliminate the need of the case based tuning 

of the control parameters, self-adaptive strategies could be employed in LCA as they are used in other evolutionary algorithms. Finally, 

the performance of LCA can be further tested on the real world engineering optimization problems addressed in the literature. Besides, a 

comparative study would be worth to conduct to measure the potency of LCA in comparison with other state of the art global 

optimization algorithms. 
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The appendix: Simulation of the number of changes imposed to the best formations 

A geometric random variable X is distributed by the probability and cumulative density functions as follows: 
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where cp  is the distribution parameter. When X is bounded to n, the probability and cumulative density functions are changed as 

follows: 
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To develop a formula for generating a random number from the truncated geometric distribution, we have [17]: 
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where, r is a uniformly distributed random variable within [0,1].  Fig 25 shows the histogram of the number of changes made in the 

best formation for various values of cp . As can be seen, as the value of cp  becomes greater, the maximum number of changes 

becomes smaller such that for 99999.0cp  the number of changes is always one. Each histogram in Fig 25 has been plotted based on 

1000 random numbers generated by equation (30) with 1
0
q . 
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Fig 25. Effect of various values of pc on the number of changes imposed to the best formation. 
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